CS 465

TLS

Student Learning Goals

- Understand the TLS handshake
- Understand client/server authentication in TLS
 - > RSA key exchange
 - > DHE key exchange
 - Explain certificate ownership proofs in detail
 - What cryptographic primitives are used and why?
- Understand session resumption
- Understand the limitations of TLS

Genesis of TLS

SSLv1 (1994) Netscape unreleased

PCT (1995)
Microsoft

SSLv2 (1994) Netscape First release

STLP (1996) ← Microsoft

SSLv3 (1995) Netscape

WTLS (1998) WAP Forum TLS 1.0 (1997-1999) IETF (aka SSLv3.1)

TLS 1.1 (2006) TLS 1.2 (2008)

Source: SSL and TLS, Rescorla

SSL Record Protocol Operation

SSL Record Format

RSA Key Exchange Method

Client Server

RSA Key Exchange Method

Client Mutual Authentication Server

DHE Key Exchange Method

Client Server

Key Material for TLS

- RSA
 - Client generates pre-master secret
 - Sends to server encrypted with servers public key
- O DHE
 - DH shared key is the pre-master secret
- Pre-master secret and random values used to compute master secret
- Master secret and random values used to compute key block material
 - Key block contains 4 or 6 keys
 - > Two keys for AES, 2 keys for MAC, 2 keys (IV) for block cipher mode if needed

Perfect Forward Secrecy

- In vanilla RSA, the premaster secret is encrypted with the server's public key
 - If the server's private key is compromised all past and future sessions are also compromised
 - Majority of TLS uses vanilla RSA
- Alternatives
 - Ephemeral Diffie-Hellman (DHE-RSA)
 - > Elliptic curve variation is faster (ECDHE)

Forward Secrecy

- Using an ephemeral key
 - Even if the server's private key is later compromised, past sessions cannot be decrypted, even if captured and stored by a third party

TLS 1.3

- https://blog.cloudflare.com/tls-1-3overview-and-q-and-a/
 - Reduced round trips in the handshake
 - Certificates are encrypted
 - > Quick session resumption

Review Questions

- How many shared keys are derived between a client and a server that establish a TLS session?
- How does the server prove ownership of its private key?
- How does the client prove ownership of its private key when client authentication is (rarely) used?
- What is the pre-master secret?
 - Who creates it?
 - How is it securely transmitted?
- What is session resumption?
 - How does it differ from a regular SSL handshake?
- When do the client and server start encrypting traffic using symmetric encryption?

Review Questions

- How many shared keys are derived between a client and a server that establish a TLS session?
 - Each side generates 4-6 keys
- How does the server prove ownership of its private key?
 - Implicitly by decrypting the pre-master secret and finishing handshake
- How does the client prove ownership of its private key when client authentication is (rarely) used?
 - Send digital signature to the server
- What is the pre-master secret?
 - > Who creates it?
 - How is it securely transmitted?
- What is session resumption?
 - How does it differ from a regular SSL handshake?
- When do the client and server start encrypting traffic using symmetric encryption?
 - Finished message

Limitations/Issues

- Certificate Authority system
- TLS Proxies
- TLS Inspection
 - Proxies, Middleboxes
- Other approaches
 - > Pinning (TOFU)
 - Notaries (Crowd)
 - DANE (DNS-based)

